3 nomer, minta tolong beserta caranya
Matematika
gandif
Pertanyaan
3 nomer, minta tolong beserta caranya
1 Jawaban
-
1. Jawaban msandyka
1.)
[tex](32)^{\frac{3}{5}} + (81)^{\frac{3}{4}} - (64)^{\frac{1}{2}} = (2^{5})^{\frac{3}{5}} + (3^{4})^{\frac{3}{4}} - (8^{2})^{\frac{1}{2}} \\ (32)^{\frac{3}{5}} + (81)^{\frac{3}{4}} - (64)^{\frac{1}{2}} = 2^{3} + 3^{3} - 8 \\ (32)^{\frac{3}{5}} + (81)^{\frac{3}{4}} - (64)^{\frac{1}{2}} = 8 + 27 - 8 \\ (32)^{\frac{3}{5}} + (81)^{\frac{3}{4}} - (64)^{\frac{1}{2}} = 27 \\ [/tex]
2.)
[tex]\sqrt{128} + \sqrt{48} - \sqrt{392} + \sqrt{75} \\ = \sqrt{(8)(8)(2)} + \sqrt{(4)(4)(3)} - \sqrt{(2)(2)(2)(7)(7)} + \sqrt{(5)(5)(3)} \\ = 8 \sqrt{2} + 4 \sqrt{3} - 14 \sqrt{2} + 5 \sqrt{3} \\ = 9 \sqrt{3} - 6 \sqrt{2} \\ = 3(3 \sqrt{3} - 2 \sqrt{2}) \\ [/tex]
3.)
[tex](\log_{5} {32})(\log_{3} {25})(\log_{2} {81}) \\ = (\log_{5} {2^{5}})(\log_{3} {5^{2}})(\log_{2} {81}) \\ = (\log_{2} {3^{4}})(\log_{5} {2^})(\log_{3} {5^{2}}) \\ = 4(\log_{2} {3})(\log_{5} {2})2(\log_{3} {5}) \\ = 8[/tex]